References
<A NAME="RG14703ST-1">1</A>
Davie EW.
Fujikawa K.
Kisiel W.
Biochemistry
1991,
30:
10363
<A NAME="RG14703ST-2A">2a</A>
Rai R.
Sprengeler PA.
Elrod KC.
Young WB.
Curr. Med. Chem.
2001,
8:
101
<A NAME="RG14703ST-2B">2b</A>
Samama MM.
Thromb. Res.
2002,
106:
V267
<A NAME="RG14703ST-2C">2c</A>
Kaiser B.
Cell. Mol. Life Sci.
2002,
59:
189
<A NAME="RG14703ST-2D">2d</A>
Leadley RJ.
Curr. Top. Med. Chem.
2001,
1:
151
<A NAME="RG14703ST-3">3</A>
Osterkamp F.
Wehlan H.
Koert U.
Wiesner M.
Raddatz P.
Goodman SL.
Tetrahedron
1999,
55:
10713
<A NAME="RG14703ST-4">4</A>
Brimacombe JS.
Foster AB.
Stacey M.
Whiffen DH.
Tetrahedron
1958,
4:
351
<A NAME="RG14703ST-5">5</A>
Hopton FJ.
Thomas GHS.
Can. J. Chem.
1969,
47:
2395
<A NAME="RG14703ST-6">6</A>
Boeré RT.
Oakley RT.
Reed RW.
J. Orgmet. Chem.
1987,
331:
161
<A NAME="RG14703ST-7A">7a</A>
General procedure for the preparation of bisamidines 3 and 4 from bisnitriles by the LiHMDS
[6]
method: A oven-dried Schlenck-flask equipped with a rubber septum is charged with
HMDS (2.6 mmol) in THF (3 mL) under argon atmosphere and cooled by an ice bath. After
addition of n-BuLi (3.0 mmol, 2.5 M in hexane) and stirring for 1 h a solution of the bisnitrile
(0.52 mmol) in THF (3 mL) was added. The reaction mixture turned dark red or brown.
It was stirred for 24 h at room temperature and then quenched with 6 M HCl in ethanol
(2 mL). After 1 h the solvents were removed in vacuo. The residue was solved in few
MeOH and purified by preparative HPLC (Rainin RP18, H2O/CH3CN mixtures with 0.1% TFA). The bisamidine was isolated as a TFA salt by lyophilization
resulting in a colorless powder.
<A NAME="RG14703ST-7B">7b</A>
Analytical data of 3 and 4: 2-O-(4′-Amidinophenyl)-5-O-(3′′-amidinophenyl)-1,4:3,6-dianhydro-d-sorbitol trifluoroacetic acid salt (3):
[α]D
20 = +49, [α]578
20 = +51, [α]546
20 = +58, [α]436
20 = +100, [α]365
20 = +160 (c 0.099, H2O); 1H NMR (300 MHz, DMSO-d
6) δ = 3.87-4.05 (m, 4 H, 1-H2, 6-H2), 4.61 (d, J = 4.1 Hz, 1 H, 3-H), 5.02-5.13 (m, 3 H, 2-H, 4-H, 5-H), 7.19-7.44 (m, 5 H, 2′-H,
6′-H, 2′′-H, 4′′-H, 6′′-H), 7.55 (t, J = 7.9 Hz, 1 H, 5′′-H), 7.79 (pd, J = 9.0 Hz, 2 H, 3′-H, 5′-H), 8.88-9.29 [m, 8 H, 2 × C(NH2)2]. 13C NMR (75 MHz, DMSO-d
6) δ = 71.2, 72.7 (C-1, C-6), 77.4, 81.1, 81.5, 86.0 (C-2, C-3, C-4, C-5), 115.1 (C-2′′),
115.4 (C-2′, C-6′), 120.1 (C-4′), 120.8, 121.1 (C-4′′, C-6′′), 129.9 (C-3′′), 130.3
(C-3′, C-5′), 130.8 (C-5′′), 156.9 (C-1′′), 162.5 (C-1′), 164.9, 165.4 [2 × C(NH2)2]; HRMS (FAB): m/z calcd 383.1719, found 383.1717 (C20H23N4O4, M + H+). 2-O-(3′-Amidinophenyl)-5-O-(4′′-amidinophenyl)-1,4:3,6-dianhydro-d-sorbitol trifluoroacetic acid salt (4):
[α]D
21 = +46, [α]578
21 = +49, [α]546
21 = +55, [α]436
21 = +94, [α]365
21 = +157 (c 0.267, H2O); 1H NMR (300 MHz, DMSO-d
6) δ = 3.86-4.10 (m, 4 H, 1-H2, 6-H2), 4.60 (d, J = 4.7 Hz, 1 H, 3-H), 5.00-5.15 (m, 3 H, 2-H, 4-H, 5-H), 7.18 (pd, J = 9.0 Hz, 2H, 2′′-H, 6′′-H), 7.34-7.45 (m, 3 H, 2′-H, 4′-H, 6′-H), 7.53 (t, J = 7.9 Hz, 1 H, 5′-H), 7.83 (pd, J = 8.9 Hz, 2 H, 3′′-H, 5′′-H), 9.00-9.35 [m, 8 H, 2 × C(NH2)2]; 13C NMR (75 MHz, DMSO-d
6) δ = 70.9, 72.8 (C-1, C-6), 77.3, 80.8, 81.6, 86.0 (C-2, C-3, C-4, C-5), 114.6 (C-2′),
115.7 (C-2′′, C-6′′), 120.5, 120.7 (C-4′, C-6′), 120.6 (C-4′′), 129.6 (C-3′), 130.6
(C-3′′, C-5′′), 158.0 (C-1′), 161.1 (C-1′′), 164.9, 165.5 [2 × C(NH2)2]; HRMS (FAB): m/z calcd. 383.1719, found 383.1715 (C20H23N4O4, M + H+).
<A NAME="RG14703ST-8">8</A>
McDougal PG.
Rico JG.
Oh Y.-I.
Condon BD.
J. Org. Chem.
1986,
51:
3388
<A NAME="RG14703ST-9A">9a</A>
Quan ML.
Liauw AY.
Ellis CD.
Pruitt JR.
Carini DJ.
Bostrom LL.
Huang PP.
Harrison K.
Knabb RM.
Thoolen MJ.
Wong PC.
Wexler RR.
J. Med. Chem.
1999,
42:
2752
<A NAME="RG14703ST-9B">9b</A>
Quan ML.
Ellis CD.
Liauw AY.
Alexander RS.
Knabb RM.
Lam G.
Wright MR.
Wong PC.
Wexler RR.
J. Med. Chem.
1999,
42:
2760
<A NAME="RG14703ST-9C">9c</A>
Fevig JM.
Pinto DJ.
Han Q.
Quan ML.
Pruitt JR.
Jacobson IC.
Galemmo RA.
Wang SA.
Orwat MJ.
Bostrom LL.
Wong PC.
Lam PYS.
Wexler RR.
Bioorg. Med. Chem. Lett.
2001,
11:
641
<A NAME="RG14703ST-9D">9d</A>
Jia ZJ.
Wu Y.
Huang W.
Goldman E.
Zhang P.
Woolfrey J.
Wong P.
Huang B.
Sinha U.
Park G.
Reed A.
Scarborough RM.
Zhu B.-Y.
Bioorg. Med. Chem. Lett.
2002,
12:
1651
<A NAME="RG14703ST-9E">9e</A>
Su T.
Wu Y.
Doughan B.
Jia ZJ.
Woolfrey J.
Huang B.
Park G.
Sinha U.
Scarborough RM.
Zhu B.-Y.
Bioorg. Med. Chem. Lett.
2001,
11:
2947
<A NAME="RG14703ST-9F">9f</A>
Pruitt JR.
Pinto DJ.
Estrella MJ.
Bostrom LL.
Knabb RM.
Wong PC.
Wright MR.
Wexler RR.
Bioorg. Med. Chem. Lett.
2000,
10:
685
<A NAME="RG14703ST-10">10</A>
Courtin A.
Helv. Chim. Acta
1983,
66:
68
<A NAME="RG14703ST-11">11</A>
Dains FB.
Eberly F.
Org. Synth., Coll. Vol. II
Wiley;
New York:
1943.
p.355
<A NAME="RG14703ST-12">12</A>
Doyle MP.
Siegfried B.
Dellaria JF.
J. Org. Chem.
1977,
42:
2426
<A NAME="RG14703ST-13">13</A>
Baik W.
Kim JM.
Kim YS.
Lee SW.
European Symposium on Organic Chemistry 12
Poster presentation;
Groningen Netherlands:
2001.
Coupling of boronic acid 19 using several Suzuki methods:
<A NAME="RG14703ST-14A">14a</A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457 ; standard conditions: PdCl2(PPh3)2, Bu4NBr (cat.), aq. Na2CO3, PhMe reflux, 44%
<A NAME="RG14703ST-14B">14b</A>
Wallow TI.
Novak BM.
J. Org. Chem.
1994,
59:
5034 ; Pd(OAc)2, aq. Na2CO3, THF reflux, 0%
<A NAME="RG14703ST-14C">14c</A>
Wolfe JP.
Singer RA.
Yang BH.
Buchwald SL.
J. Am. Chem. Soc.
1999,
121:
9550 ; Pd(OAc)2, 2-(di-tert-butylphosphino)-biphenyl, KF, THF reflux, 0%
<A NAME="RG14703ST-14D">14d</A>
Alo BI.
Kandil A.
Patil PA.
Sharp MJ.
Siddiqui MA.
Snieckus V.
J. Org. Chem.
1991,
56:
3763 ; Pd2(dba)3, PPh3, aq. Na2CO3, DME reflux, 35%
<A NAME="RG14703ST-14E">14e</A>
Watanabe T.
Miyaura N.
Suzuki A.
Synlett
1992,
207 ; Pd2(dba)3, PPh3, Ba(OH)2, DME/H2O reflux, 39%
<A NAME="RG14703ST-15A">15a</A>
Savage SA.
Smith AP.
Fraser CL.
J. Org. Chem.
1998,
63:
10048
<A NAME="RG14703ST-15B">15b</A>
Negishi coupling of aryl iodide 18: An oven-dried Schlenk-flask equipped with a rubber septum was charged with 1.29
g (6.0 mmol) PhSO2NHt-Bu in 15 mL THF under an argon atmosphere and cooled in an ice bath. After addition
of 8.2 mL n-BuLi (1.6 M in hexanes) the solution was stirred for 2 h. A thick, pale yellow precipitate
formed. 1.82 g (13.4 mmol) ZnCl2 beads were added (the precipitate dissolves) and 1 h later a solution of 2.19 g (5.0
mmol) 18, 185 mg (0.2 mmol) Pd2(dba)3 and 262 mg (1.0 mmol) PPh3 in 10 mL THF was transferred into the reaction mixture. After addition of 424 mg
(10.0 mmol) dried LiCl the reaction mixture was refluxed for 70 h. 100 mL sat. aq.
NH4Cl and 100 mL MTBE were added and the aqueous layer was extracted three times with
MTBE. The combined organic fractions were washed with brine and dried over MgSO4. Purification by flash chromatography (pentane/MTBE 2:1→1:1) yielded 2.18 g (4.2
mmol, 83%) pure 21.
<A NAME="RG14703ST-15C">15c</A>
Analytical data of 2-O-benzyl-5-O-[4′-(2′′-tert-butylamino-sulfonylphenyl)-phenyl]-1,4:3,6-dianhydro-d-mannitol (21): colorless solid; Mp 62 °C; [α]D
20 = +128, [α]578
20 = +133, [α]546
20 = +152 (c 1.008, CHCl3); 1H NMR (500 MHz, CDCl3) δ = 0.98 [s, 9 H, C(CH3)3], 3.58 (s, 1 H, NH), 3.78 (t, J = 8.7 Hz, 1H, 1-H), 3.94 (dd, J = 8.6 Hz, 7.0 Hz, 1H, 1-H), 4.06-4.12 (m, 2 H, 2-H, 6-H), 4.20 (dd, J = 9.4 Hz, 6.0 Hz, 1 H, 6-H), 4.60 (d, J = 11.9 Hz, 1 H, CHHPh), 4.62 (t, J = 4.7 Hz, 1 H, 3-H), 4.78 (d, J = 11.9 Hz, 1 H, CHHPh), 4.79-4.85 (m, 2 H, 4-H, 5-H), 7.04 (pd, J = 8.7 Hz, 2H, 2′-H, 6′-H), 7.29 (dd, J = 7.7 Hz, 1.0 Hz, 1 H, 6′′′-H), 7.29-7.40 (m, 5 H, Ph-H), 7.43-7.47 (m, 3 H, 3′-H,
5′-H, 4′′′-H), 7.53 (td, J = 7.6 Hz, 1.2 Hz, 1H, 5′′′-H), 8.15 (dd, J = 7.9 Hz, 1.0 Hz, 1H, 3′′′-H); 13C NMR (75 MHz, CDCl3) δ = 29.7 [C(CH3)3], 54.3 [C(CH3)3], 71.0, 71.6, 72.6 (C-1, C-6, CH
2Ph), 77.9, 78.9, 80.6, 80.8 (C-2, C-3, C-4, C-5), 114.9 (C-2′, C-6′), 127.6, 128.1
(C-3′′, C-6′′), 127.9, 128.4 (Ph-C), 131.1 (C-3′, C-5′), 131.7, 132.4 (C-4′′, C-5′′),
132.2 (C-4′), 137.6 (Ph-Cq), 139.4 (C-1′′), 142.2 (C-2′′), 158.1 (C-1′); IR(film): 3371, 2973, 2876, 1607, 1514,
1467, 1324, 1245, 1152, 1128, 1076, 988, 834, 765 cm-1; Anal. calcd. for C29H33NO6S (523.65) C 66.52, H 6.35, N 2.68, found C 66.41, H 6.01, N 2.48.
<A NAME="RG14703ST-16A">16a</A>
Judkins BD.
Allen DG.
Cook TA.
Evans B.
Sardharwala TE.
Synth. Commun.
1996,
26:
4351
<A NAME="RG14703ST-16B">16b</A>
Preparation of benzamidine 5 via amide oxime: Benzonitrile 23 (1 mmol) was dissolved in 10 mL THF/EtOH (1:1). After addition of NH2OH·HCl (3 mmol), Na2CO3 (2 mmol) and 10 mL water the mixture was heated to 80 °C and stirred for 20 h (TLC
monitoring). After cooling 20 mL water was added and the aqueous layer was extracted
three times each with 20 mL CH2Cl2. The combined organic fractions were dried over MgSO4 and the solvents were removed in vacuo. The crude amide oxime was then dissolved
in 30 mL MeOH/HOAc (1:1) and Ac2O (2 mmol) was added. After 30 min Pd/C was added and the reaction mixture was vigorously
stirred under hydrogen atmosphere (HPLC monitoring, Rainin RP18, H2O/CH3CN mixtures + 0.1% TFA). Finally, the solution was filtrated over a pad of celite
and the solvents were completely removed in vacuo. The crude bezamidine was then stirred
under an argon atmosphere in dry TFA/anisole (10:1) for 24 h. Purification by flash
chromatography (CH2Cl2/MeOH/TFA, 100:2:1 → 100:5:1), concentration of all product fractions and subsequent
precipitation with MTBE/hexane gave 5 as TFA salt.
<A NAME="RG14703ST-16C">16c</A>
Analytical data of 2-O-(4′-amidinophenyl)-5-O-[4′′-(2′′′-aminosulfonylphenyl)-phenyl]-1,4:3,6-dianhydro-d-sorbitol trifluoroacetic acid salt (5): colorless solid; [α]D
20 = +51, [α]578
20 = +54, [α]546
20 = +61, [α]436
20 = +108, [α]365
20 = +174 (c 0.407, CH2Cl2/MeOH, 1:1); 1H NMR (500 MHz, DMSO-d
6) δ = 3.56 (d, J = 10.4 Hz, 1 H, 1-H), 3.89 (dd, J = 9.4 Hz, 5.4 Hz, 1 H, 6-H), 4.07 (dd, J = 9.4 Hz, 5.7 Hz, 1 H, 6-H), 4.11 (dd, J = 10.4 Hz, 3.8 Hz, 1 H, 1-H), 4.62 (d, J = 5.1 Hz, 1 H, 3-H), 4.97 (q, J = 5.5 Hz, 1 H, 5-H), 5.04 (t, J = 5.0 Hz, 1 H, 4-H), 5.11 (d, J = 3.3 Hz, 1 H, 2-H), 7.02 (pd, J = 8.7 Hz, 2 H, 2′′-H, 6′′-H), 7.13 (s, 2 H, SO2NH2), 7.20 (pd, J = 8.9 Hz, 2 H, 2′-H, 6′-H), 7.29 (d, J = 7.5 Hz, 1 H, 6′′′-H), 7.32 (pd, J = 8.7 Hz, 2 H, 3′′-H, 5′′-H), 7.53 (t, J = 7.5 Hz, 1 H), 7.59 (t, J = 7.4 Hz, 1 H, 4′′′-H, 5′′′-H), 7.83 (pd, J = 8.8 Hz, 2 H, 3′-H, 5′-H), 8.01 (d, J = 7.8 Hz, 1 H, 3′′′-H), 9.01/9.15 [s/s, 4 H, C(NH2)2]; 13C NMR (75 MHz, DMSO-d
6) δ = 70.9, 71.7 (C-1, C-6), 77.1, 80.7, 81.8, 86.0 (C-2, C-3, C-4, C-5), 114.3 (C-2′′,
C-6′′), 115.7 (C-2′, C-6′), 120.6 (C-4′), 127.4 (C-3′′′, C-6′′′), 130.5, 130.6 (C-3′,
C-5′, C-3′′, C-5′′), 131.6, 132.7 (C-4′′, C-4′′′, C-5′′′), 139.8 (C-1′′′), 142.4 (C-2′′′),
157.3 (C-1′′), 161.2 (C-1′), 164.9 [C(NH2)2]; HRMS (ESI) m/z calcd. 496.1542, found 496.1544 (C25H26N3O6S, M + H+).
<A NAME="RG14703ST-17">17</A>
Pd/C is preferred, since the use of Raney-nickel in MeOH/AcOH leads to the formation
of minor amounts of Ni(OAc)2, which is difficult to remove by chromatography.
<A NAME="RG14703ST-18">18</A>
Brougham P.
Cooper MS.
Cummerson DA.
Heaney H.
Thompson N.
Synthesis
1987,
1015
<A NAME="RG14703ST-19">19</A>
Krone W.
Chem. Ber.
1891,
24:
834